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Abstract 
This paper aims at elaborating on the digital signal processing techniques used in data 

manipulation in the radioSolariz solar radio-telescope project. 

Focus is drawn on the implementation of different digital signal processing algorithms 

through the use of streaming single instruction — multiple data extensions 2. This complementary 

instruction set to general purpose personal computer microprocessors offers increased computational 

power by realizing parallel processing. The benefit is a higher data throughput while lowering the 

electrical power consumption of the digital signal processing computer. 

Optimized code fragments are shown along with original code snippets and these are 

discussed and analysed. Future work and implementation of other modern parallel processing 

technologies are envisaged. 

 

 
Introduction 

 

The radioSolariz project was conceived in 2019 [1] and the first prototype 

has been developed a year later to start collecting radio data starting from late 2020. 

The telescope called radioSolariz is a solar radio telescope that collects data from 

radio waves emitted by the Sun in the meter and decameter radio bands. The 

telescope’s station general block diagram is shown in fig. 1. The station consists of 

antennas, a radio receiver and a general purpose personal computer. The radio 

receiver digitizes the received signal from the antennas and transfers it to the 

personal computer. There, using the software of radioSolariz, the signal data is 

processed by means of digital signal processing (DSP) techniques [2–5]. 

All digital processing tasks may be executed on the general purpose 

processor, the central processing unit (CPU) of the utilized computer, by employing 

standard instructions. This approach was implemented in the first software 

prototype. Later, for the need of improving the performance of the system, a new 

approach was devised — implementation of the streaming single instruction — 

multiple data extensions 2 (SSE2) [6–7]. 
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Fig. 1. RadioSolariz station general block diagram 

 
Digital signal processing using streaming single instruction — multiple 

data extensions 2 
 

What is SSE2? It is an instruction set, or more precisely an extension to the 

standard Intel architecture IA-32 instruction set of the CPU of the IBM-PC family 

personal computers. This instruction set, as its name suggests, is meant for parallel 

processing of data realized through the technique called single instruction, multiple 

data (SIMD). What this means is that a single instruction may be executed on an 

array of similar data, thus avoiding the process of decoding multiple instructions and 

saving power and transistors in the CPU by doing so. Another benefit is that the 

instruction set controls a parallel processing co-processor inside the main processor 

that can perform several operations in parallel. 

SSE2 was first introduced by Intel with the initial version of the Pentium 4 

processor in 2000. This instruction set is not the first parallel processing instruction 

set introduced by Intel. It is an improvement of the earlier SSE instruction set, and 

completely replaces the MMX instruction set (MMX is officially an initialism that 

has no meaning and is trademarked by Intel). Later in 2004 Intel introduced an 

extension of SSE2 called SSE3, which never reached the popularity of its 

predecessor. There is a SSE4 version also. 

SSE2 extends the 70 instructions of the SSE model by 144 new instructions. 

SSE2 was implemented in the processors of the competing processor manufacturer 

Advanced Micro Devices (AMD). This happened in 2003 when the company 

introduced the Opteron and Athlon 64 AMD64 64-bit CPUs. 

 Digital signal processing in radioSolariz involves data preconditioning, 

spectral decomposition, filtering, signal power level extraction, data compression, 

etc. All these calculations involve processing of large amounts of data using the same 

operations, hence they are good candidates for parallelization. Nevertheless, the 

initial variant of the software relied on the classical instruction set x87 floating point 
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unit (FPU) that is programmatically scalar and maybe parallelized implicitly by the 

CPU to some extent, depending on the underlying processor architecture and 

algorithm structure. 
 

 
 

Fig. 2. Structure of streaming single instruction — multiple data extensions 2 operations  

on floating point 32-bit data 

 
FPU (x87) instructions calculate intermediate results with 80 bits of 

precision. Such a precision is required only by numerically unstable algorithms that 

were not used in the radioSolariz software. 

On the other hand, SSE2 floating point instructions offer the capability to 

perform four operation in parallel on 32-bit floating point data due to the presence 

of four SSE2 arithmetic and logical units (ALUs) for each processor core (see Fig. 2) 

or two operation in parallel on 64-bit floating point data. For the purposes of 

radioSolariz digital signal processing 32-bit floating point data suffices. Thus 

theoretically a fourfold increase in data throughput can be achieved. Due to implicit 

parallelism realized by the CPU on regular x87 instructions the improvement in 

performance is lower, but still meaningful. For this reason the second variant of the 

software uses extensively SSE2 instructions to perform calculations on large 

datasets. 

Fig. 3 shows an implementation both using x87 and SSE2 instructions of a 

summation function that finds the sum of all elements of an array. The code in the 

top section of Fig. 3 is the standard x87 code while the bottom section of the same 

figure represents the SSE2 code. Both code snippets are representative of the 

respective instruction sets implementations in C++ programming language. It is 

visible that both codes are short, clear to read and require no comments. There are 
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no cumbersome code constructs when implementing SSE2 instructions in C++. All 

these benefits let the author translate most of the computationally intensive code to 

SSE2 and still keep it well readable and understandable, yet easy to debug. 

 
 
  float  vSum; 
  size_t i; 
 
  for (i = 0; i < length; ++i) 
    vSum += pInput [i]; 
 
  *pResult = vSum; 
 

 
  XMVECTOR vSum = XMVectorZero (); 
  size_t   i; 
 
  for (i = 0; i < (length >> 2); ++i) 
    vSum = XMVectorAdd (vSum, pInput [i]); 
 
  *pResult = XMVectorGetX (vSum) + XMVectorGetY (vSum) + 
             XMVectorGetZ (vSum) + XMVectorGetW (vSum); 
 

 

Fig. 3. C++ code for realizing an array sum calculation using x87 instruction set (top)  

and SSE2 instruction set (bottom) 

 
 Another example of an optimization using SSE2 instructions is the function 

used to calculate the base 10 logarithm of the signal power. The two code snippets 

of the original code and the optimized code are shown in Fig. 4. Here we can observe 

that the original code is shorter. More complex calculations require more local 

temporary variables to store the intermediate results. This can be avoided, but the 

code expression would become so hard to read that the maintenance of the code 

would be compromised. 

 In both examples a theoretical maximum improvement of the performance 

is four times. Tests showed real improvement of performance close to this 

estimation — 3.5 times. This figure varies over different processors the code is tested 

on, because each processor family realizes super scalar parallelism to different 

extent. 

 Many other functions that operate on large arrays of data in the radioSolariz 

software were optimized in a similar way and showed similar levels of performance 

benefits. 

 It was possible to realize a second level of parallelization by running as many 

programme threads as the number of cores were in the microprocessor, because 

SSE2 ALUs are present in each core of the CPU. Our final tests were executed on 

an 8 core processor. The final maximum theoretical performance improvement in 

this case is 32 times. 
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  float  fVerySmallNumber = 1e-38f; 
  size_t i; 
 
  for (i = 0; i < length; ++i) 
    pOutput [i] = log10f (pInputReal [i] * pInputReal [i] + 
                          pInputImaginary [i] * pInputImaginary [i] + 
                          fVerySmallNumber); 
 

 
  XMVECTOR vVerySmallNumber = XMVectorReplicate (1e-38f); 
  size_t   i; 
  XMVECTOR vRR; 

XMVECTOR vII; 
  XMVECTOR vRRplusII; 
 
  for (i = 0; i < (length >> 2); ++i) 
  { 
    vRR         = XMVectorMultiply (pInputReal [i], pInputReal [i]); 
    vII         = XMVectorMultiply (pInputImaginary [i], pInputImaginary 
[i]); 
    vRRplusII   = XMVectorAdd (vRR, vII); 
    vRRplusII   = XMVectorAdd (vRRplusII, vVerySmallNumber); 
    pOutput [i] = XMVectorLog10 (vRRplusII); 
  } 
 

 

Fig. 4. C++ code for base 10 logarithm of the signal power calculated using x87 

instruction set (top) and SSE2 instruction set (bottom) 

 
Conclusions 

 

A several times increase in performance was observed by implementing 

SSE2 instructions instead of standard x87 instructions in the software. The author is 

encouraged to continue improving the software of the telescope through the 

implementation of new modern parallel processing hardware and software 

techniques in the next versions of the radioSolariz telescope, such as Field 

programmable gate arrays (FPGA) implementation [8]. 
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ЦИФРОВА ОБРАБОТКА НА СИГНАЛИ В RADIOSOLARIZ  

ЧРЕЗ SSE2 

 
С. Забунов 

 
Резюме 

Настоящата публикация цели да доразвие темата за цифровата 

обработка на сигнали в проекта radioSolariz. Проектът radioSolariz пред-

ставлява радиотелескоп, предназначен за наблюдение на Слънцето в метровия 

и декаметровия радиообхвати. Цифровата обработка на сигнали в телескопа се 

използва за първична и вторична обработка на данните в radioSolariz. 

Обърнато е внимание на приложението на различни алгоритми за 

цифрова обработка на сигнали чрез използване на streaming single instruction – 

multiple data extensions 2. Този допълнителен набор инструкции предлага 

подобрена изчислителна производителност, реализирана чрез паралелна обра-

ботка на данните. Предимствата са както в увеличената производителност, 

така и в намалената консумация на електроенергия. 

Представени са алгоритмични програмни фрагменти едновременно от 

оригиналния и от оптимизирания код. Примерите са дискутирани и анализи-

рани. Направен е преглед на идеите за бъдеща работа чрез приложение на 

модерен хардуер и софтуер за паралелна обработка на данни. 
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